

Panel « Delayed Claims and Risk Pricing »

Intervenants : Kamel Debiche (BST), Najed ksouri (ERM Partners).

Troisième Conférence Arabe des Actuaires

IBNR et Machine Learning : défis et perspectives

Alger, Algérie – Juillet 2025

Kamel Debiche Actuaire, Chef d'études (BST)

Contexte

- Le Machine Learning intéresse de plus en plus les assureurs pour mieux prévoir les provisions et réduire les erreurs.
- Il permet d'analyser les données plus en détail qu'avec les méthodes classiques.

Problématique:

- Les méthodes traditionnelles perdent des infos importantes.
- Elles ne captent pas bien la complexité des sinistres.
- Il faut choisir entre simplicité et précision

Pourquoi le ML?

- Détecter plus tôt les tendances cachées et anomalies.
- Réduire l'erreur moyenne (MAE).

Machine Learning in P&C Insurance: A Review for Pricing and Reserving (Blier-Wong et al., 2020)

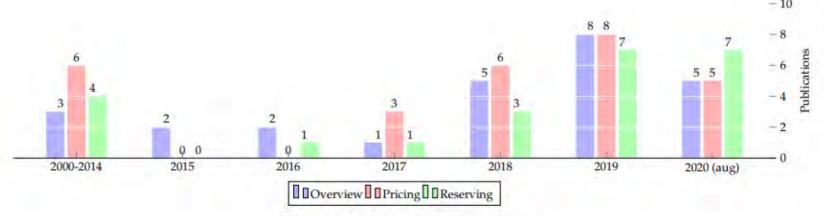


Figure 1. Number of publications per year.

Étude comparative : Méthode traditionnelle vs Machine Learning

Année

d'origine

2011

2012

En million de DA

Objectif: Comparer l'approche traditionnelle Mack/Chain-Ladder à des méthodes Machine Learning pour estimer les provisions IBNR.

Méthode traditionnelle (classique) : Modèle Mack / Chain-Ladder

- •Méthode stochastique linéaire, fondée sur la continuité des facteurs de développement.
- •Hypothèses fortes : homogénéité temporelle, absence d'effets calendaires ou non-linéaires.

Approche Machine Learning: Modèles supervisés adaptés aux triangles de sinistres.

GLM régularisé : (Penalized GLM)

- LASSO (pénalisation L1)
- Ridge (pénalisation L2)

XGBoost: (Gradient Boosted Decision Trees)

Régression Tweedie

11 1 749 4 159 6 542 7 857 8 609 9 544 9 901 10 020 10 101 10 227 2 122 6 238 8 613 12 628 12 959 13 089 13 205 13 263 13 330 13 385 10 892

15 203

15 561

15 696

Année de développement

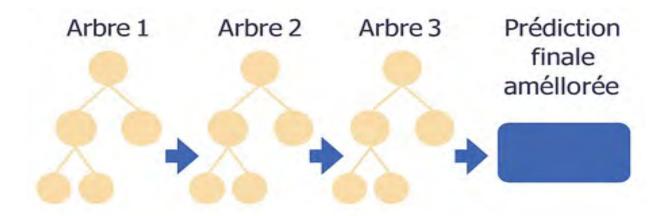
2013	2 586	7 048	10 391	12 313	15 658	16 731	17 045	17 199	17 384	17 499		
2014	2 934	8 057	11 406	13 339	17 252	18 319	18 561	18 820	18 984			
2015	3 065	8 006	11 290	13 155	17 557	18 313	18 755	19 038				
2016	2 779	7 218	10 456	12 448	13 530	14 841	15 333					
2017	2 834	7 470	10 553	11 991	13 298	14 421						
2018	3 133	7 696	9 887	11 867	13 069							
2019	3 328	6 472	9 505	11 506								
2020	2 018	4 932	6 993									
2021	3 076	6 368										
2022	2 766											

14 934

LASSO & Ridge: Extensions du modèle GLM

- GLM (Generalized Linear Model): outil classique pour modéliser les triangles de sinistres.
- Ridge & LASSO: mêmes principes que GLM, mais ajoutent une pénalisation:
- Ridge Regression (L2): réduit les grands coefficients mais les conserve tous.
- LASSO Regression (L1): certains coefficients = 0 → sélection automatique de variables.
- Avantages: stabilité, robustesse, prévention du surapprentissage.
- Application IBNR : ajuster la réserve en contrôlant la complexité du modèle

XGBoost: eXtreme Gradient Boosting



- Famille: Apprentissage supervisé, GBM (Gradient Boosting Machines).
- Principe: enchaîner plusieurs arbres pour corriger les erreurs → modèle puissant.
- Pourquoi : capte relations non linéaires, interactions complexes.
- Cas IBNR: prédire incréments futurs du triangle → somme → provision.
- Distribution Tweedie: adaptée aux données de sinistres.

Calibrage et Paramétrage des Modèles

- Ridge / LASSO: lambda choisi par cross-validation
- alpha = $0 \rightarrow \text{Ridge}$.
- alpha = $1 \rightarrow LASSO$.
- XGBoost :
- eta (learning rate) → règle la vitesse → ex. 0.1.
- max_depth → contrôle la complexité.
- objective → reg:tweedie pour pertes.
- Validation croisée :
- Diviser train/test.
- Vérifier MAE & RMSE.
- Éviter le surapprentissage.

Résultats comparatifs :

Méthode	Provision estimée (Millions)	Erreur	Ratio Erreur / Provision	RMSE	
Mack (Chain Ladder)	34 814	MSEP = 4 173	12 %		
Ridge	30 406	MAE = 579	1,9 %	769	
LASSO	24 331	MAE = 645	2,6 %	833	
XGBoost (Tweedie)	35 109	MAE = 126	0,36 %	205	

Les modèles de **Machine Learning** (Ridge, LASSO, XGBoost) affichent une erreur plus faible que la méthode traditionnelle **Mack**, confirmant une meilleure capacité de prédiction. **XGBoost** ressort comme le modèle ayant donné le **meilleur résultat**, grâce à sa puissance pour capter des relations non linéaires et interactions complexes.

Conclusion:

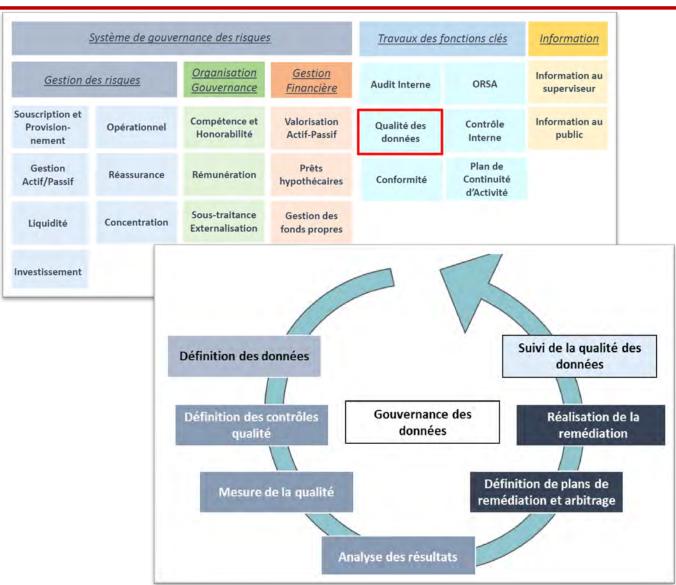
- L'intégration du **Machine Learning** ouvre de nouvelles perspectives pour améliorer la précision des provisions IBNR, même à partir de données agrégées.
- Bien que des limites existent (données parfois insuffisamment détaillées, nécessité d'une bonne calibration), le potentiel est considérable pour compléter et affiner les méthodes traditionnelles.
- Des méthodes comme XGBoost montrent que le Machine Learning exploite des relations non linéaires et peut ainsi devenir un véritable levier d'innovation actuarielle, à condition de s'appuyer sur des données fiables et une interprétation maîtrisée.

ARAB ACTUARIAL CONFERENCE 2025

ENJEUX DU
MACHINE LEARNING
EN PROVISIONNEMENT

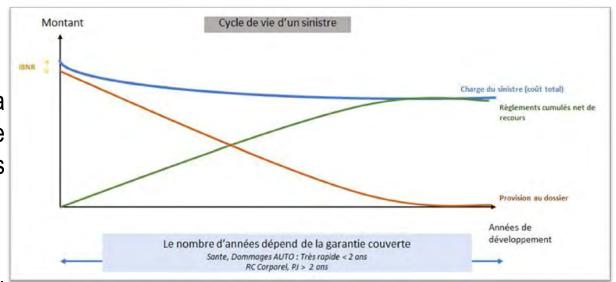
Enjeu 1 : Qualité des données

- La qualité de données fait dorénavant l'objet d'une politique écrite. Pourquoi ? Comment ?
- ❖ Le provisionnement avec Machine Learning résiste il bien à une mauvaise QDD ?
 - Généralement NON (Un historique riche et complet est nécessaire)
 - Que faire ? Effectuer des missions de fiabilisation de données en amont et en aval de la collecte.



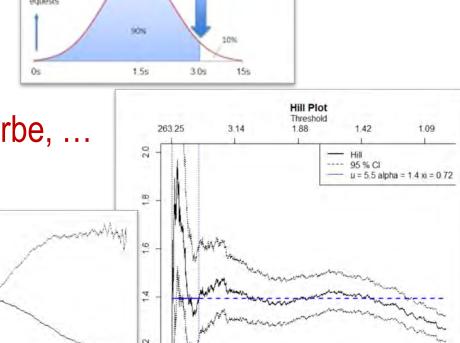
Enjeu 2 : Ruptures de gestion

- Qu'est ce qu'une rupture de gestion ?
 - Un changement dans le cycle de vie des sinistres dû à des phénomènes internes (nouvelle politique de souscription, nouveaux process ou SI, ...) ou externes (inflation, changement réglementaire, ...)
- Le provisionnement avec Machine Learning résistent ils bien aux ruptures de gestion?
 - **❖** Souvent **NON** (→ **Passage aux méthodes de crédibilité**)
 - ❖ Parfois OUI si le modèle est bien enrichi par un historique de ruptures similaires



Enjeu 3 : Traitement des dérives/extrêmes

- ☼ Qu'est ce qu'un sinistre Extrême ? Grave ? Attritionnel ?
- ☼ Qu'est ce qu'une dérive de sinistralité ? Fréquence ?
- Comment les visualiser ? Histogramme, Boxplot, ...
- Comment les détecter ? Estimateur de Hill, Gerstengarbe, ...
- Comment les provisionner ? Sont ils réassurés ?
 - Non réassurés : Par égalisation
 - Réassurés : Par marge de sécurité

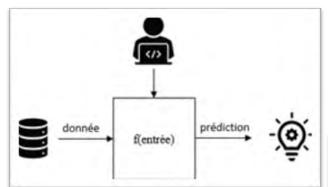


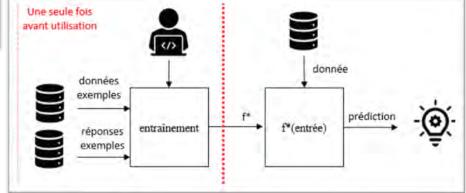
1500

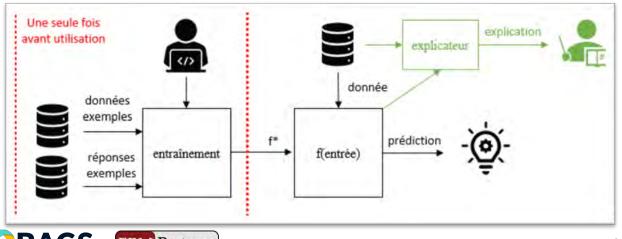
Enjeu 4 : Transparence des algorithmes

Quel confiance donner aux algorithmes?

- Quelle solution?
 - ☐ Les explicateurs ?
 - ☐ GLM Machine Learning driven ?



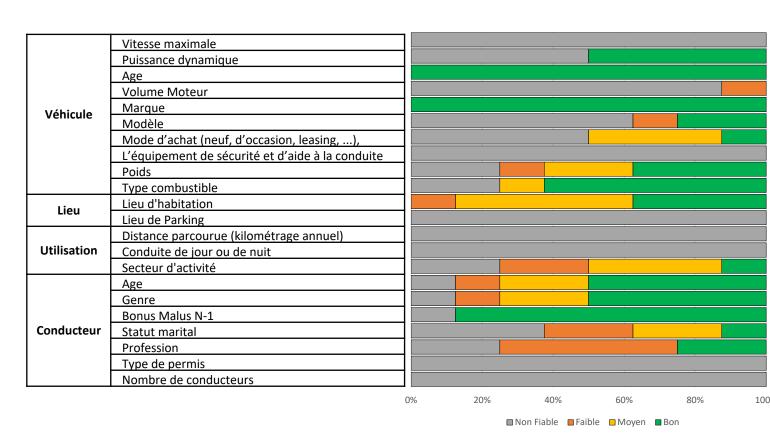




Enjeu 5 : Cohérence avec la tarification

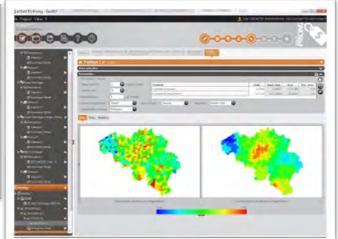
☐ Le modèle de provisionnement doit il coïncider avec celui du coût de la Tarification ?

- ☐ En théorie OUI mais pas forcément (un décalage d'un an existe déjà)
- ☐Un tarif comprend parfois des des considérations sociales et politiques. (Exemple : Zonier)



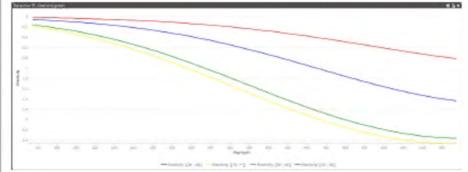
ML et tarification

☐ Tarif central et zoniers

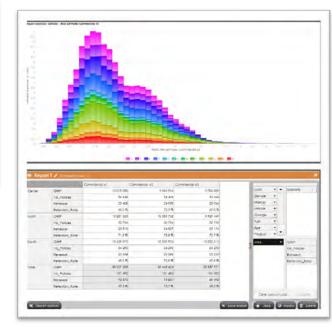


☐ Comportement de l'assuré

et son élasticité prix



□ Profit et stress testing



Merci pour votre attention!

